

Computer System Engineering Department

ENCS530: Graduation Project

Secure IPv6 in Mobile Environments:

SEND Implementation for Android Platform

Students:

Ayham Jaradat (1090708) and Sarah Hattab (1090527)

Supervisor:

Dr. Ahmad Alsadeh.

June 12th, 2014

I

Abstract

The goal of this project is to implement one of the main security mechanisms on Android

mobile devices to secure IPv6 addressing process. We mainly focus on “SEcure Neighbor

Discovery” (SEND) mechanism. We built an Android application that is capable of capturing

IPv6 packets from the device network stack, and adding the SEcure Neighbor Discovery

options to these packets. The application uses C library to capture IPv6 packets and Java

classes to modify and verify the SEND options in these packets. However, Android devices

are being improved by Google to be able to connect to IPv6 networks dynamically in the

next future versions, and because this task is not ready yet we tend to use static configuration

method as a temporary solution to clarify our Android mobile application functionalities.

II

Table of Contents

Chapter 1: Introduction .. 1

1.1 Motivation .. 1

1.2 Problem Statement ... 2

1.3 Contributions .. 2

1.4 Report Outline .. 2

Chapter 2: Background and Related Work .. 3

2.1 Internet Protocol version 6 (IPv6) ... 3

2.1.1 IPv6 Header Format .. 4

2.1.2 IPv6 Addresses Types ... 5

2.1.3 Unicast Addresses Format .. 6

2.1.4 IPv6 Stateless Address Autoconfiguration .. 7

2.2 Neighbor Discovery Protocol (NDP) .. 8

2.2.1 Neighbor Discovery Functionalities and Messages .. 8

2.2.2 Neighbor Discovery Implications .. 10

2.3 SEcure Neighbor Discovery (SEND) ... 12

2.3.1 Router Authorization... 12

2.3.2 Address Ownership Proof Mechanism and Protected messages 13

2.4 Android ... 16

2.4.1 Open Source Advantages .. 16

2.4.2 Architecture overview ... 16

2.4.3 Integrated Development Environment (IDE) and Tools... 18

2.5 Related Work .. 19

2.5.1 TrustRouter .. 19

2.5.2 EASY-SEND ... 20

2.5.3 NDprotector ... 20

2.6 Chapter summary ... 21

Chapter 3: SEND Implementation on Android .. 22

3.1 Capturing IPv6 Packets on Android ... 22

3.1.1 The C-language Code Functionalities .. 23

III

3.2 Handling Captured IPv6 Packets .. 24

3.3 SEND Software Structure .. 25

3.3.1 Use Case Diagram ... 25

3.3.2 Class Model Diagram (UML) .. 30

3.3.3 Component Relationship Model... 33

3.4 Problems Faced and Constraint ... 34

3.5 How to Run the Application .. 35

Chapter 4: Results and Conclusions ... 37

4.1 Results ... 38

4.1.1 CGA Computational Cost Results ... 38

4.1.2 Application Testing Results.. 39

4.2 Conclusions .. 42

References .. 43

IV

List of Figures

Figure 2.1 IPv6 Packet Fix Header Format[2]…………………………………………….4

Figure 2.2 IPv6 Types and their notations………………………………………………...6

Figure 2.3 IPv6 Unicast Address Format………………………………………………….6

Figure 2.4 Android software Architecture[27]…………………………………………..17

Figure 3.1 Ip6table Rules ……………………………………………………………..…23

Figure 3.2 The C-language code functionality…………………………………………...24

Figure 3.3 Use Case Diagram of our SEND software……………………………………26

Figure 3.4 Application main Page ……………………………………………………….27

Figure 3.5 Application SEND Parameters Page …………………………………………28

Figure 3.6 Application Test CGA Page…………………………………………………..29

Figure 3.7 UML digram of SEND Option classes………………………………………..31

Figure 3.8 UML Diagram of Packet Handling Classes…………………………………...32

Figure 3.9 Component Relationship model……………………………………………….34

Figure 3.10 commands to compile and copy the C executable file to Android device….. 36

Figure 4.1 eclipse LogCat output for running C executable file………………………….37

Figure 4.2 eclipse LogCat output for Android Java application…………………………..38

Figure 4.3 snapshot from CGA computational cost testing………….…………………...39

Figure 4.4 some logging information from Android Application………………………..40

Figure 4.5 some logging information from Android Application………………………..41

V

Table of Abbreviations

aapt Android Asset Packaging Tool

adb Android Debug Bridge

ADD Authorization Delegation Discovery

ADT Android Developer Tools

ARP Address Resolution Protocol

ASL Apache Software License

CGA Cryptographically Generated Addresses

CPA Certification Path Advertisement

CPS Certification Path Solicitation

DAD Duplicate Address Detection

ddms Dalvik Debug Monitor Service

DHCPv6 Dynamic Host Configuration Protocol for IPv6

DNS Domain Name Server

DoS Denial of Service

dx Dalvik Cross-Assembler

EUI-64 Extended Unique Identifier

GPLv2 General Public License, version 2.0

ICMP Internet Control Message Protocol

ICMPv6 Internet Control Message Protocol for IPv6

ID Interface Identifier

IETF Internet Engineering Task Force

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISPs Internet Service Providers

JPL Java programming language

MAC Media Access Control

MITM Man- In- The- Middle

NA Neighbor Advertisement

ND Neighbor Discovery

NDK Native Development Kit

NDP Neighbor Discovery Protocol

NS Neighbor Solicitation

OS Operating System

PKCS Public-Key Cryptography Standards

RA Router Advertisement

RM Redirect message

RS Router Solicitation

SDK Software Development Kit

SEND SEcure Neighbor Discovery

SLAAC Stateless Address Auto Configuration

http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://opensource.org/licenses/GPL-2.0
http://en.wikipedia.org/wiki/Internet_Engineering_Task_Force

1

Chapter 1: Introduction

Internet Protocol version 4 (IPv4) addresses are running out, and thus there is a necessary

change from IPv4 to IPv6. IPv6 was developed by the Internet Engineering Task Force (IETF)

to deal with the problem of IPv4 address exhaustion [1], IETF put security as a design goal for

this new Internet Protocol. Internet Protocol version 6 has integrated the security capability

based on IPsec [2]. But, IPsec cannot be used before the nodes have a valid IPv6 address [3].

A host needs to automatically configure a valid IPv6 on its interface, in order to benefit from

the network. This operation is achieved using the Neighbor Discovery Protocol (NDP) [12],

which includes Neighbor Discovery for IPv6 and IPv6 Stateless Address Auto Configuration

(SLAAC) [4]. The NDP is used for critical functionalities, but it is also prone to critical

attacks. To defend these attacks, a set of enhancements were added to NDP to become SEcure

Neighbor Discovery (SEND) [5], RFC 3971.

The SEcure Neighbor Discovery (SEND) is a security extension of the Neighbor Discovery

Protocol (NDP) in IPv6. It uses Cryptographically Generated Addresses (CGAs) [6], a digital

signature and a X.509 certification to protect NDP. SEND enhances and solves NDP security

issues and makes NDP a safe protocol, but its deployment is not easy and it is a compute

intensive and bandwidth consuming, for example, CGA computations can take a long time

varies from seconds to hours for different security-level values, especially for devices with

limited resources such as mobile phones.

1.1 Motivation

Smart phones world is growing rapidly, and most of companies are providing their products

and services to smart phones users. With major Internet Service Providers(ISPs) and

companies around the world permanently enabled IPv6 for their products and services,

examples of these companies are Google, Cisco and Facebook, Therefore there is a need for

migrating to IPv6 in a secure way in mobile environments, where devices have limited

resources and capabilities.

http://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://en.wikipedia.org/wiki/IPv4_address_exhaustion
http://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol
http://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol
http://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol
http://en.wikipedia.org/wiki/IPv6

2

1.2 Problem Statement

 The Internet has become a very essential part of our life. Manufacturing devices for enabling

Internet and developing their software is the fastest technology nowadays. Smart phones are

the most popular devices achieving that purpose in the late few years, and due to large

number of smart phones which are needed to connect to Internet, secure IPv6 become a

necessary requirement. Accordingly, our main goal in this project is to implement the IPv6

security mechanism SEND for Android mobile devices to secure IPv6 addressing process. We

chose Android platform for many reasons, most importantly because it is an open source

operating system, and because Android is the world’s most popular mobile platform [17].

1.3 Contributions

Our contribution mainly appears in the SEND implementation on Android platforms, we

implemented the libnetfilter_queue library on Android platform to capture IPv6 packets; we

modified the library’s queues names to run on Android, then we compiled the library and

build it as external library to be used with Android devices.

Moreover, we wrote all of the needed classes to handle IPv6 packets; the classes modify the

packets, add SEND options and verify them on IPv6 packets.

1.4 Report Outline

The rest of the report includes Chapter 2 that describes background and related work, Chapter

3 describes the proposed work, and Chapter 4 concludes the work and gives an outlook for the

future work.

3

Chapter 2: Background and Related Work

Smart phones world set to become the fastest spreading technology in the human history. As

engineers we have to search about gaps in that world to fill them, and that was the main

purpose of our project implementation as mentioned before. This chapter introduces the

background theory, technology used, and related work with different implementations of

SEcure Neighbor Discovery mechanism (SEND).

2.1 Internet Protocol version 6 (IPv6)

The Internet Protocol version 6 (IPv6) was proposed in 1995 as a solution to the limitations on

globally unique addressing that IPv4's 32-bit addressing space represented [1]. The changes

from IPv4 to IPv6 can be summarized in five categories as following.

 Expanded Addressing Capabilities

The IP address size increased from 32 bits in IPv4 to 128 bits in IPv6.

 Header Format Simplification

IPv6 have less header format than IPv4, to reduce the processing cost of packet

handling and to limit the bandwidth cost of the IPv6 header.

 Improved Support for Extensions and Options

IPv6 header options allow for more efficient forwarding and greater flexibility for

introducing new options in the future.

 Flow Labeling Capability

IPv6 enables the labeling of packets that belongs to particular traffic; this allows

special handling of packets such as in real-time service.

 Authentication and Privacy Capabilities

4

IPv6 specifies some extensions to support authentication, data integrity, and data

confidentiality.

2.1.1 IPv6 Header Format

Any IPv6 packet consists of two parts, control information and payload. The control

information part contains a mandatory fixed header and an optional extension header, while

the payload is the part that contains the actual data being sent.

The IPv6 packet Fixed Header is a 40 octets (320 bits) representing the following fields as

depicted in Figure 2.1 [2].

Figure 2.1: IPv6 Packet Fix Header Format [2]

 Version

 4-bit Internet Protocol version number equals to 6.

 Traffic Class

5

8-bit traffic class field, the 6 most significant bits are used for differentiated services,

and the least 2 significant bits are used for priority values.

 Flow Label

20-bit flow label, it is used to help in real time applications, when the sender requests

special handling.

 Payload Length

 16-bit unsigned integer represents the length of IPv6 payload in octets.

 Next Header

8-bit selector, it identifies the type of header immediately following the IPv6 header.

 Hop Limit

8-bit unsigned integer, it is similar to IPv4 time-to-live field, it is decremented by 1 by

each node that forwards the packet, and the packet is discarded when Hop Limit

reaches to zero.

 Source Address

 128-bit address representing the IPv6 address of the sender.

 Destination Address

 128-bit address representing the IPv6 address of the intended recipient.

2.1.2 IPv6 Addresses Types

The 128-bit IPv6 addresses can be classified into three types differ from each other in their

formats and use. They are Unicast, Anycast and Multicast. All types of IPv6 addresses are

assigned to interfaces, not nodes. And the type of an IPv6 address is identified by the high-

order bits of the addresses.

6

 Unicast address is used to identify a single interface. There are several types of unicast

addresses in IPv6, such as Global unicast and Link-local unicast addresses. All

interfaces are required to have at least one Link-local unicast address.

 Anycast address is used to identify a set of interfaces belonging to different nodes.

When a packet is sent to an anycast address, it is delivered to the nearest interface from

the interfaces identified by that address. It depends on the routing protocols’ measure

of distance to find the nearest one.

 Multicast Address is used to identify a set of interfaces belonging to different nodes.

When a packet is sent to a multicast address, it is delivered to all interfaces identified

by that address.

There are also some special reserved addresses such as the Unspecified Address

(0:0:0:0:0:0:0:0) which is used to indicate the absence on an address, and the Loopback

Address (0:0:0:0:0:0:0:0:1) which is a unicast address used by a node to send an IPv6 packet

to itself.

Figure 2.2 shows the binary prefix and the IPv6 notation for IPv6 address types.

Figure 2.2: IPv6 Types and their notations

2.1.3 Unicast Addresses Format

There are several types of Unicast IPv6 addresses, such as site-local unicast and IPv6

addresses with embedded IPv4 addresses. But our main focus in on Link-Local unicast and

Global Unicast.

Mainly any Unicast address consists of two parts, subnet prefix and interface identifier as

shown in figure 2.3.

7

Figure 2.3: IPv6 Unicast Address Format

The subnet prefix is a typically hierarchically structure value assigned to a cluster or subnet.

The Interface Identifier (ID) in IPv6 unicast address is used to identify an interface on a link,

so it is required to be unique within a subnet prefix. And for all unicast addresses, except the

addresses that start with the binary value 000, the interface identifier is required to be 64 bits

long [10].

2.1.4 IPv6 Stateless Address Autoconfiguration

One of the main advantages of IPv6 is IP addresses Autoconfiguration where a node can easily

configure its IP address when connecting to a network. The Autoconfiguration process

includes generation a link-local address, generating global addresses via Stateless Address

Autoconfiguration (SLAAC), and the Duplicate Address Detection (DAD) procedure to verify

the uniqueness of the addresses on a link.

A node uses Stateless Address Autoconfiguration (SLAAC), and a Neighbor Discovery

Protocol to automatically generate a link-local address on each enabled IPv6 interface. The

address is generated using a combination of locally available information and information

advertised by routers. Routers advertise prefix that identify the subnet, while hosts generate an

Interface Identifier that is unique on a subnet. An address is formed by combining the prefix

from router and the Interface Identifier from host itself [4].

The 64-bit Interface Identifier part of the IPv6 address is usually constructed in Modified

Extended Unique Identifier (EUI-64) format. The 48-bit MAC address of the interface is used

in this mechanism to construct the 64-bit interface identifier [10].

8

2.2 Neighbor Discovery Protocol (NDP)

Neighbor Discovery Protocol is a one of the IPv6 protocols that operates in the Link Layer

and allows nodes on the same link to advertise their existence to their neighbors and to learn

about the existence of other neighbors. The Neighbor Discovery Protocol is build on top of

Internet Control Message Protocol version 6 (ICMPv6). The protocol defines five different

ICMPv6 packet types to replace the Address Resolution Protocol (ARP), Internet Control

Message Protocol (ICMP), Router Discovery (RDISC) and Router Redirect protocols of IPv4.

2.2.1 Neighbor Discovery Functionalities and Messages

Neighbor Discovery Protocol solves some of the problems related to the interaction between

nodes on the same link. It is responsible for address autoconfiguration, discovery of other

nodes on the link, determining the Link Layer addresses of other nodes, duplicate address

detection, parameter discovery, finding available routers, redirect, next-hop determination,

address prefix discovery, and neighbor unreachability detection.

Neighbor Discovery Protocol defines five different ICMPv6 packet types, each one of

Neighbor Discovery messages consist of an ICMPv6 header, neighbor discovery message

specific data, and ND message options, which provides additional information such as link-

layer addresses, on-link network prefixes, on-link maximum transmission unit information,

redirection data, mobility information and router specification [12].

The five ICMPv6 packet types of the Neighbor Discovery Protocol are described as follow:

 Router Solicitation (RS): an ICMPv6 message with type 133, hosts may send out RS to

discover routers on the same link, and learn network information such as prefixes and

Domain Name Server (DNS) addresses. Hosts send out RS to request routers to

generate Router Advertisements (RA) immediately rather than at their next scheduled

time.

 Router Advertisement (RA): an ICMPv6 message with type 134, Routers advertise

their existence by sending RA message periodically, or in response to a Router

http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/ICMP_Router_Discovery_Protocol
http://en.wikipedia.org/wiki/ICMP_Redirect_Message
http://en.wikipedia.org/wiki/IPv4

9

Solicitation message. Router Advertisements contain prefixes, address configuration, a

suggested hop limit value, etc.

 Neighbor Solicitation (NS): an ICMPv6 message with type 135, node sends NS

message to determine the link-layer address of neighbor nodes, or to verify that the

node is still reachable. NS messages are also used for Duplicate Address Detection

(DAD).

 Neighbor Advertisement (NA): an ICMPv6 message with type 136, nodes send NA

message as a response to a NS message with information about its link-layer address.

A node may also send unsolicited Neighbor Advertisements to announce a link-layer

address change.

 Redirect message (RM): an ICMPv6 message with type 137. Routers use RM to

inform hosts of a better first hop for a destination.

Routers send unsolicited Router Advertisements (RA) every 200 seconds (by default) to all

nodes link-local multicast group (FF02::1). In this way; hosts discover routers on the same

link they are connected to. Router Advertisement (RA) message contains the following

information:

 Prefixes on the link

 Prefix lifetime

 A flag to indicate whether it can be used for stateful or stateless autoconfiguration.

 Default router information

 Parameter infoormation such as MTU to use, and maximum hop-limit.

Hosts do not need to wait the assigned time to receive a periodic RA message [13], they can

issue Router Solicitations (RS) messages in order to request Router Advertisement (RA) from

routers. RS messages are sent to all routers link local multicast address (FF02::2). Hosts can

use the unspecified source address (::/128) or link-local address as the source address of RS

message.

Hosts can use prefixes sent by routers in RA messages to configure themselves with a unique

IPv6 address using Stateless Address Autoconfiguration (SLAAC) and the EUI-64 conversion.

10

The flag sent with RA message indicates whether to use stateful or stateless autoconfiguration.

DHCPv6 is used if the link is set to use stateful autoconfiguration. DHCPv6 is much like

DHCP for IPv4, it allocates and stores host IP addressing information [13].

Address Resolution functionality means determining the Link Layer addresses of other node.

Router resolution is used when a node needs to send a packet to IPv6 address but does not

know the link-layer address to forward it to. This is similar to Address Resolution Protocol

(ARP) in IPv4. In IPv6 the Neighbor Solicitation and Neighbor Advertisement messages are

used to find which link layer address to use in order to send data to a destination IPv6 address.

When an interface is initialized or reinitialized, it uses SLAAC to associate a link-local

address with that interface. To ensure that the configured IP address is unique on the link, the

node run Duplicate Address Detection (DAD) algorithm. The node joins the multicast group

FF02::1 and the solicited-node multicast address. It sends NS messages to the solicited-node

multicast with that address and waits for NA. If no node responded with NA then the address

is unique.

2.2.2 Neighbor Discovery Implications

Neighbor Discovery Protocol and Stateless Address Autoconfiguration are used by nodes in

an IPv6 network to learn the local topology, including the Media Access Control (MAC)

address to IP mappings for the local nodes. Since Neighbor Discovery is a link-local protocol,

some protection mechanisms are used to protect NDP based on its scope, for example, the

source address must be unspecified or a link-local address, the hop limit must be set to 255,

and the routers do not forward link-local messages. However, this basic protection is not

enough to protect IPv6 local networks. The initial NDP specifications suggest that IPsec may

be used to secure Neighbor Discovery Protocol, but does not specify how. It appears that using

current IPsec mechanisms is problematic due to key management problems [14].

Neighbor Discovery Protocol suffers from security and privacy implications. It is vulnerable

to several security threats that attacks against pure Neighbor Discovery functions without

involving routers or routing information, or other threats relevant to router discovery or router

11

related mechanisms [15]. At the end, any threat could be considered as one of the following

attack types or combinations of them.

 Denial of Service (DoS): these attacks prevent communication between two legitimate

nodes, using significant system resources. For example, attackers can generate DoS on

DAD to prevent a network node from obtaining a network address. There are also

Flooding Denial of Service attacks, in which a malicious node redirects other hosts’

traffic to a victim node, and thereby creates a flood of bogus traffic at the victim host.

 Spoofing: spoofing attack happens when a malicious node impersonates another

device or user on a network by using the victim node’s address or identifier. Spoofing

attacks could be used to launch attacks such as man-in-the-middle (MITM), steal data,

create DoS attacks, spread malware, and abuse the trust relation between legitimate

nodes. The NDP does not provide mechanisms for authenticating the source or

destination of a message so it is possible for attackers to generate crafted IPv6 packets

with spoofed source addresses.

 Replay: All Neighbor Discovery and Router Discovery messages are prone to replay

attacks, in this attack, an attacker would capture valid messages and replay them later.

The attacker will use these captured messages and replay them even if they were

cryptographically protected. If the messages were not cryptographically protected then

the attacker can change the content of the captured messages and take over the traffic

flow between two hosts.

 Redirect: redirect attack takes place when a malicious node redirects packets away

from router or other legitimate receiver to another node on the link. This attack can be

used for DoS purposes by having the node to which the packets were redirected drop

the packets.

 Rogue router: this attack happens when a malicious node acts as a router, it advertise

itself as a last-hop router to make hosts select the attacker as its default router, then the

http://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101/

12

attacker acts as an MITM and effectively receive, drop, or replay the packets. An

attacker can configure a rouge router on an unsecured link easily, but a node cannot

easily distinguish between a fake and authorized router.

For the privacy implications, Neighbor Discovery Protocol suffers from serious privacy issues.

NDP and SLAAC provides autoconfiguration facilities to generate IPv6 interface identifier

(ID) based on MAC address using Modified EUI-64 format, which result in a static constant

ID. This ID will not change with time or in different networks, so it is easily for an attacker to

track the node with specific ID or capture the traffic related to that node. However, there is a

solution for this privacy issue, it was introduced in RFC 4941, “Privacy Extensions for

Stateless Address Autoconfiguration in IPv6” which generate global scope addresses from IDs

that change over time. But it does not protect against the security threats. The Internet

Engineering Task Force developed SEND as a countermeasure to NDP security

vulnerabilities. But it also solves the privacy problem.

2.3 SEcure Neighbor Discovery (SEND)

SEcure Neighbor Discovery (SEND) is a mechanism that enhances the Neighbor Discovery

Protocol. It is considered as a security extension of the NDP. Since Neighbor Discovery

Protocol is insecure and vulnerable to various attacks, the IETF developed SEND to provide a

mechanism to secure NDP with a cryptographic method that is independent of IPsec.

SEND provides some features to Neighbor Discovery Protocol to secure its various functions;

these features are router authorization mechanism, address ownership proof mechanism and

message protection. SEND uses the five NDP messages with new options CGA, RSA

signature, nonce and timestamp. It also adds two new ICMPv6 messages used for router

authorization; these two messages are certificate path solicitation (CPS) type 148 and

certificate path advertisement (CPA) type 149.

2.3.1 Router Authorization

SEND introduce an authorization delegation discovery (ADD) process to authenticate routers,

its solution is based on Certificate paths, anchored on trusted parties. Before a host adopts the

13

router as its default router, the host must be configured with a trust anchor to which the router

has a certification path. When a node receives a protected Router Advertisement (RA)

message, it must check if there is a certification path available. And if there is no one, then it

must trigger the authorization delegation discovery process. SEND uses Certification Path

Solicitation (CPS) and Certification Path Advertisement (CPA) messages to discover a

certification path to the trust anchor without requiring the actual Router Discovery messages

to carry lengthy certification paths.

The Router authorization process can be described as follow:

1- The router should be authorized to act as a router; it obtains a router certificate

from a trust anchor.

2- Router sends protected Router Advertisement message, host sends CPS message to

ask the router to provide a valid certificate.

3- The router responds with CPA message that contains the certificate.

4- The host verifies router legitimacy, and accepts the router as the default router if it

is valid.

2.3.2 Address Ownership Proof Mechanism and Protected messages

SEND uses RSA cryptosystem, which is one of the widely used public key cryptosystems. A

public-private key pair is generated by all nodes before they can claim an address. SEND uses

the CGA option to carry the public key and associated parameters in order to make sure that

the sender of a Neighbor Discovery message is the owner of claimed address. SEND also uses

Timestamp and Nonce options to prevent replay attacks.

2.3.2.1 Cryptographically Generated Address (CGA)

CGA is an IPv6 address that is bound to a public signature key. The Interface Identifier (ID)

of this address is generated by computing a cryptographic one-way hash function from public

key and auxiliary parameters. Binding the IPv6 address of a node to its public key prevents

address stealing and authenticates the IPv6 address without requiring third-party or additional

security infrastructure. A receiving node can verify the sender address by re-computing the

14

hash value using the CGA parameters carried with the CGA option in the SEND messages and

compare this hash value with the Interface Identifier of the sender address.

SEND protects messages sent from IPv6 address by attaching the public key and auxiliary

parameters and by signing the message with the corresponding private key. Valid CGAs can

be generated by any sender, including a potential attacker because CGAs themselves are not

certified. However, they cannot use any existing CGAs; an attacker cannot take a CGA

created by someone else and send signed messages that appear to come from the owner of that

address.

The CGA is associated with a set of parameters that consist of a public key, auxiliary

parameters and a security parameter (Sec) that determines its strength against brute-force

attacks. The Sec parameter is a three-bit unsigned integer encoded in the three leftmost bits of

the Interface Identifier. The CGA parameters are used to compute two hash values, Hash1 (64

bits) and Hash2 (112 bits).

Cryptographically Generated Address (CGA) parameters are Modifier (128-bit), Subnet Prefix

(64-bit), Collision Count (8-bit), Public Key and Extension Fields. The process of generating a

new CGA takes the subnet prefix, the public key, and the security parameter (Sec) as input to

the algorithm. The cost of generating a new CGA depends exponentially on the security

parameter Sec.

 The process starts by setting the modifier to a random or pseudo-random 128-bit value. Then

compute hash2 value which is an SHA-1 hash value over the entire CGA parameters. The

hash2 computation loop continues until finding the final modifier, the one that makes 16xSec

leftmost bits of hash2 equals zero. The final modifier is saved and used as an input for hash1

computation. The Interface Identifier is formed from the hash1 value which is the 64 leftmost

bits of SHA-1 hash value. The Sec value is encoded in the three leftmost bits, and seventh and

eighth bits from left are set to zero [7].

The CGA’s computational cost depends mainly on the Sec value, For Sec=0, the algorithm is

relatively fast, for Sec values greater than zero, the CGA computations can take a long time,

for example the algorithm took 1.65 Hours with Sec=2 on a Machine with 2.67-GHz CPU

15

[16], the most computationally expensive part of CGA algorithm is finding the final modifier

to satisfy the hash2 condition. There is a possibility to avoid repeating the expensive search

for an acceptable modifier value by reusing the old modifier value when the subnet prefix of

the address change but the address owner’s public key does not change. However, this

optimization makes it easier for an observer to link two addresses to each other [6].

2.3.2.2 RSA Signature

The RSA Signature option is used to protect Neighbor and Router discovery messages, this

option allows public key based signature to be attached to NDP messages. RSA signature

protects the integrity of the messages and authenticates the identity of their sender.

The RSA option data structure contains 12-bit Type field, Length field, 16-bit reserved field,

128-bit Key Hash field, Digital Signature Field and Padding field. The Key Hash field

containing the left most significant 128 bits of a SHA-1 hash of the public key used for

constructing the signature. The digital signature field is variable-length field containing the

first of a family standards called Public-Key Cryptography Standards (PKCS#1) signature,

constructed by using the sender’s private key [5].

2.3.2.3 Timestamp Option

The Timestamp option offers replay protection without any previously established state or

sequence numbers. Its purpose is to make sure that unsolicited advertisements and redirects

messages have not been replayed.

2.3.2.4 Nonce Option

Nonce option is used to protect the solicitation-advertisement pairs of NDP messages against

replay attacks. Its purpose is to make sure that an advertisement is a fresh response to a

solicitation sent earlier by the node. The option uses a random number selected by the sender

of the solicitation messages to achieve the protection. The advertisement messages that

respond to any solicitation message should include a matching nonce option [5].

http://en.wikipedia.org/wiki/PKCS

16

2.4 Android

Android is an open source platform that was built on the Linux Kernel to offer a full set of

software for mobile and tablet devices with touch screen feature. Google and the Open

Handset Alliance developed the Android software platform and operating system based on the

Linux operating system. Android was uncovered in 2007 and many versions have been

developed since that, its first released started from Cupcake then Donut, Eclair, Froyo,

Gingerbread, Honeycomb, Ice Cream Sandwich, Jelly Bean and ending with KitKat [17], it

will continue growing as well as developers keep moving towards improving it.

2.4.1 Open Source Advantages

Google decided to release the Android open source project under version 2 of the Apache

Software License (ASL). The ASL applies only to the user-space components of the Android

Platform, while the underlying Linux kernel is licensed under the General Public License,

version 2.0 (GPLv2).

 The fact that Android is an open source platform has many advantages:

 Consumers can buy more innovative mobile devices at lower prices.

 Mobile operators can easily customize their product lines and they will be able to offer

newly developed services at a faster rate.

 Handset manufacturers will benefit from the lower software prices.

 Developers will be able to produce new software more easily, because they have full

access to the system source code and extensive API documentation.

2.4.2 Architecture overview

Android is a software stack for mobile devices that includes an operating system, middleware

and key applications. The architecture components of Android are Linux Kernel, Libraries,

Android Run Time, Application framework and Applications [26] as shown in figure 2.4.

http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/GPL-2.0

17

Figure 2.4: Android software stack Architecture [27]

 Linux Kernel

Android uses the Linux 2.6 Kernel. Google decided to use Linux as Hardware Abstraction

Layer because of its device drivers, security, memory management, process management, and

network stack.

 Libraries

These are Android native libraries, which are written in C/C++ and provide most of the core

power of the Android platform. This level is composed of several different components such

18

as the Surface Manager (for compositing windows), 2D and 3D graphics, Media framework

(MPEG-4, H.264, MP3, etc.), the SQL database (SQLite), and a native web browser engine

(WebKit).

 Android Run Time

Android run time includes the Dalvik Virtual Machine. Dalvik runs dex files, which are byte

codes resulting from converting jar-files at build time. Dex files are more compact and

efficient than class files, an important consideration for the limited memory and battery

powered devices that Android targets. The Android run time also includes Core Libraries,

which contains all collection, classes, and utilities.

 The Application Framework

This framework is written in Java and it is the toolkit that all applications use. The most

important component of the framework is the Activity Manager, which manages the life cycle

of applications. The Package Manager keeps track of the applications that are installed on the

device. The Window Manager is a JPL abstraction on top of the lower level services provided

by the Surface Manager. The Telephony Manager contains the API’s for the phone

applications. Content Providers form a framework that allows applications to share data with

other applications. The Resource Manager is used to store localized strings, bitmaps and other

parts of an application that are not coded. The View System contains buttons and lists. It also

handles event dispatching, layout, and drawing. The Location Manager, Notification Manager

and XMPP Manager are also interesting API’s that are beyond our scope.

 Applications

The Application Layer contains all applications: Home, Contacts, Browser, user-written

applications and so on. They all use the Application Framework.

2.4.3 Integrated Development Environment (IDE) and Tools

Android provides the Android Developer Tools (ADT) plug-in for Eclipse, which provides a

professional-grade development environment for building Android apps. It is a full Java IDE

with advanced features to help for build, test, debug, and package Android apps. The ADT

19

includes the Software Development Kit (SDK) which provides the API libraries and developer

tools. Moreover, Android provides Native Development Kit (NDK) which is a toolset that

allows implementing parts of an Android app using native-code languages such as C and C++.

The SDK comes with a bunch of tools that relieve the creation of an Android app. The most

important tools are Android Asset Packaging Tool (aapt), Android Debug Bridge (adb),

Dalvik Cross-Assembler (dx) and Dalvik Debug Monitor Service (ddms).

2.5 Related Work

SEcure Neighbor Discovery (SEND) has some real challenges and limitations in several areas

including implementation and deployment, which is why most operating systems support NDP

but still not support SEND.

There are some current SEND implementations for specific OS distributions, but they are

basically proof of concept rather than production-ready software. None of these

implementations is for Android operating system.

These implementations can be divided into two groups; the first one is the implementations

that are done in the user space such as send-0.2, NDprotector, and Easy-SEND for Linux and

WinSEND for Windows, and TrustRouter for both Windows and Linux. The others are done

at the kernel level (send-0.3) such as “Huawei and BUPT (ipv6-send-cga)” implemented in the

Linux kernel.

2.5.1 TrustRouter

TrustRouter is an implementation of Secure Neighbor Discovery (SEND), which could be

installed and run on client’s Operating System (OS). TrustRouter is implemented on three

different platforms; Mac OS X, Linux, and Windows. It concentrates on Router

Advertisements (RA) securing and does not implement CGAs yet [18]. Router Advertisement

messages must be secured since they are the router responses to client’s Router Solicitation

(RS)that hold very important information (router address and prefix). So if any node could be

in between and claim to be the trusted router and send Router Advertisement (RA) as a reply

20

for client’s Router Solicitation (RS), client will start sending traffic to it allowing loss of

information and security violations [19].

2.5.1.1 Working Mechanism

TrustRouter implementation takes Router Advertisement (RA)from OS network stack to be

checked before reaching the Operating System (OS) to start autoconfiguration process, this is

done using OS-specific module that it have since special APIs for capturing packages in the

platforms that TrustRouter supports are not propped. OS-specific module is partly executed in

the kernel mode to pass packets to their coordinate in the user mode, which invokes core

module that in turn asks for Certification Path (chain of trusted certificates starting with a

known trust anchor and ending with the certification of the router) and digital signature by

sending Certification Path Solicitation (CPS) message to the router and waiting for router

response by Certification Path Advertisement (CPA) messages each contains a certificate from

Certification Path. The core module is supported by security module that execute verification

process by checking the validity of the certification path first, then if valid it uses router

certificate public key to validate the signature and send the result of verification back to the

OS-module which in turn put the valid Router Advertisement (RA) in the network stack again

to be processed by the Operating System (OS) and drop the invalid ones[20].

2.5.2 EASY-SEND

Easy-SEND is an open source JAVA application that had been developed in Linux user-space

as an implementation for SEcure Neighbor Discovery (SEND)[21],it does not implement

router authorization[7].It is mainly used for learning purposes .Easy-SEND verifies

Cryptographically Generated Addresses (CGAs)

2.5.3 NDprotector

NDprotector is an implementation of SEcure Neighbor Discovery (SEND) running on Linux

platform. It uses Python and scapy6 to analysis and modifies packets. Scapy6 is a Python

interpreter that enables you to create, forge, or decode packets on the network [9].

NDprotector implementation takes Neighbor discovery messages and changes its destination

to the user space before they reach the kernel. After catching packets, scapy6 adds CGA

21

producers, certificate processing and SEND messages format to the original messages. Scapy6

stops the packets and analyze them to decide if we need to modify message by adding an RSA

signature using the private key of the address that the message comes from or let the message

with correct signature pass [8].

2.6 Chapter summary

In this chapter we discussed Internet Protocol Version 6 (IPv6) in section 2.1, Neighbor

Discovery Protocol (NDP) in section 2.2, Secure Neighbor Discovery Protocol (SEND) in

section 2.3, Android in section 2.4, and related works in section 2.5.

22

Chapter 3: SEND Implementation on Android

In order to implement IPv6 SEND mechanism on a mobile device, we need to fully

understand the IPv6 in general such as IPv6 Addressing and routing, Address Types, header

formats, The Neighbor Discovery and the Secure Neighbor Discovery.

The first task for implementing SEND on Android platform is to capture, analysis and filter

IPv6 Neighbor Discover messages arrived or transmitted between the Android device and

other nodes in a network. The second task is to handle these captured packets by adding or

verifying the SEND options.

3.1 Capturing IPv6 Packets on Android

Since our implementation works on user-space level and does not modify the kernel level, we

need to capture IPv6 packets from the device network stack and send them to our software

application. In order to capture the packets we use the Netfilter framework, which is a packet

filtering framework inside the Linux Kernel; it provides a set of hooks that allow kernel

modules to register callback functions with the network stack [22]. This framework with the

ip6tables kernel module gives the possibility to get IPv6 network packets from kernel into user

mode. The ip6tables is a table-based system for defining rule sets; each rule defines what

packets to capture and what action to do with them [23]. The captured or matched packets are

put into the NFQUEUE where they can be accessed from user mode through the

libnetfilter_queue C-language API. The libnetfilter_queue main features are receiving queued

packets from the kernel and issuing verdicts or re-injecting altered packets to the kernel [24].

So the first part of our software is a C-language code that is responsible of capturing packets.

We used the Android NDK toolkit to run the libnetfilter_queue API on Android. The Android

NDK (Native Development Kit) is a toolset that allows you to implement parts of your app

using native-code languages such as C and C++ [25]. NDK allows putting C code in the

Android app.

We needed to write an executable C file to work as a firewall between the network interface

card and IPv6 stack because we could not find a Java library that can capture the packets and

works on Android device. The libnetfilter_queue C library is the only one it worked. We

should mention that we tried the Virtual Services IPQ [28] or VServ IPQ for short, which

allows Java users to achieve the same functionalities in libnetfilter_queue library, we

compiled VServ IPQ using Android NDK but it did not work on the Android devices, because

it required a queue target that is not supported by the Android devices.

23

3.1.1 The C-language Code Functionalities

The C executable file first adds the ip6table rules to the kernel, we added rules to match the

five Neighbor Discovery messages, Figure 3.2 shows the ip6table rules that we added to the

kernel. Then the C executable file opens the netfilter queue handler and binds it to the

protocol family AF_INET6, and then it creates a queue and registers a callback function to be

called when a packet matches the ip6table rules. The callback function which works on

separated thread receives the packet as a parameter and writes its content on a buffer to send it

to the second part of our application to handle the packet and decide whether to accept or drop

it. The C-language code functionality is shown in figure 3.2.

Figure 3.1: ip6table Rules

24

Figure 3.2: The C-language code functionality

3.2 Handling Captured IPv6 Packets

The second part of our software is an Android Java Application; the main objective of the

Android Application is to handle the captured IPv6 packets. The application adds and verifies

the four SEND options in the packets.

The Android application has classes for creating and validating the four SEND options (CGA,

RSA, Timestamps and Nonce). Also it has classes for handling IPv6 Packets, ICMPv6 Packets

and ND Messages. There are also Android user interface classes which shows logging

information to give the user indication of what is happening in the background.

The IP6Packet class wraps the raw bytes comprising an IPv6 packet; the class declares the

offset of IPv6 header fields such as version and header length. It also declares a function to

compute the checksum. The ICMP6Packet class inherits the IP6Packet class to handle

ICMPv6 packet. Also, there is the NDMessage Class which inherits the ICMP6Packet class to

implement Neighbor Discovery Protocol and add the Secure Neighbor Discovery options.

25

The classes CGA, RSASignature, TimeStamp and Nonce all inherits the SENDOPT class that

wraps the bytes comprising a SEND option. These classes contain the methods to generate and

verify the SEND options.

We declared all the parameters in the class SendParameters such as the key length, the Sec

value and the timestamp delta. These parameters will be changeable by the application user

through the user interface classes. The secret parameters such as private key are stored in a

private file in the internal memory of the mobile device, which could not be accessed through

the user or other applications on the device. We used the Files class to handle reading and

writing these parameters to the internal memory.

We also declared a class to simulate the CGA algorithm and to generate and verify CGA

addresses. The class contains a method that takes the Sec value, the subnet prefix and the

CGA parameters to generate a valid CGA address.

We used Util and Inet6Util utility class that contains a number of methods for handling bytes,

and strings. They contain also general methods for the calculation of the checksum and the

generation of Hashes.

3.3 SEND Software Structure

To describe in more details the software we built, we will show use case diagram, class model

diagrams (UML) and component relationship model.

3.3.1 Use Case Diagram

The use case model in figure 3.3 shows the different use cases implemented in the SEND

software we built. There are mainly five use cases described below.

1- Choose SEND Parameters.

The software gives the Android Application user the ability to choose among different

SEND parameters. These parameters are Sec Value which determines the security level

required, Key Length of the RSA key pair, Timestamp Delta Value, Timestamp Fuzz

Factor and Timestamp Clock Drift Value.

The Main Activity Class shows the main page of the application which contains an

option to set these parameters.

Figure 3.4 shows the main application page, and Figure 3.5 shows the SEND

Parameters Page.

2- Test CGA Computational Cost.

This use case gives the user the ability to test CGA computational cost for different

Parameters such as Sec Value and Key Length. The Test CGA option is shown in the

26

main application page. User can click this option to open Test CGA Page which is

shown in Figure 3.6. The Test page allows a user to set the parameters value and click

run, then the application will start CGA algorithm and shows Logging information

such as the required time in millisecond and the CGA Parameters.

3- Capture Packets.

This is the main use case that runs in the background, it is responsible of capturing

Packets from the network stack and sending them to the local socket of our application.

This use case is initiated when the user clicks Start SEND Service option from the

main Application page.

4- Add SEND Options For Outgoing Packets.

This use case handles the outgoing packets by adding the four SEND options (CGA,

RSA, Timestamp, and Nonce) to the packet.

5- Verify SEND Options For Incoming Packets.

This use case checks and verifies the SEND options in the incoming packets, and

decides to accept the packet or drop it.

Figure 3.3: Use Case Diagram of our SEND software.

27

Figure 3.4: Application main Page

28

Figure 3.5: Application SEND Parameters Page

29

Figure 3.6: Application Test CGA Page

30

3.3.2 Class Model Diagram (UML)

The UML diagrams in Figure 3.7 and figure 3.8 show the main classes used and their

relationships. The UML diagram in Figure 3.7 shows the classes which are responsible of the

four SEND options. The UML diagram in Figure 3.8 shows the classes which are responsible

of handling the captured packets.

31

32

33

3.3.3 Component Relationship Model

Our software contains two main components which are the Java Android application and the C

Executable file as shown in Figure 3.9. The Java component will start the process when user

decides to run the SEND Service.

At First, the Java Application will initiate the configuration class to get the SEND parameters.

Then creates an instance of the CGA class, and checks the interfaces on the device. The

application will search for any interface with link-local IPv6 address and generate an

equivalent CGA address with the same prefix. The application will replace the original IPv6

Addresses with the new generated CGA addresses. After that, the application will create the

local server to communicate with the C executable file.

Secondly, the Java application will run the executable C file. The executable C file will add

the ip6table rules to the kernel and will create and open the netfilter queue handler to start

capturing packets that matches the provided rules.

The Last step is to communicate between the executable C file and the Java application, The

executable C file will sends the captured packets to the local socket created by the Java

application, the java application will handle the packets and send a response to the executable

C file to accept the packet or drop it. In order to increase the performance we used threads to

control the communication process, the executable C file does not to wait for a response of a

captured packet before capturing the second one. Each socket transition is accomplished in a

new thread.

34

Figure 3.9: Component Relationship model

3.4 Problems Faced and Constraint

During our progress we faced a lot of problems listed as below:

 Android platform is built upon Linux platform, and you can run Linux commands on

Android if you have a root access to the Android kernel. To have such an access and

permission to control internal system’s files, the device must be rooted. Rooting a

device will void its company guarantee and put the device in risk if anything went

wrong during the rooting process.

 Other implementations of SEcure Neighbor Discovery (SEND) such as TrustRouter

and NDProtector use Python for their implementations, they used the nfqueue-bindings

project that aims to provide access to libnetfilter_queue in high-level languages like

Python .Android applications can be built using python language. We tried to

implement our project using python but the nfqueue-bindings project libraries did not

run upon Android.

35

 Implementing parts of the Android application using a native code language such as C

is not a strait forward process, and it is not recommended to be used unless it is a need.

The NDK toolkit which is used to compile the native code has some drawbacks, and

does not generally result in a noticeable performance improvement, but it is always

increases the application complexity, as noted in the official Android developer

website [25].

 To test the SEND application we created a small wireless IPv6 network in the

university lab. We configured a router to provide an IPv6 network and thus to

announce a prefix to hosts by sending RA messages. When we tried to make the

Android device connect to the wireless network, the device tried to connect and shows

a message “Obtaining IP address” but it never connected. This is because Android

devices are hardcoded to connect to IPv4 networks [29]. And it never connects to an

IPv6-only network. We searched the internet and find a method to force the android

device to connect to IPv6 network. The method worked fine but we had to configure

the device to use static Address. The device connected and our application starts

capturing packets, but we could not force the device to change its static IP address to

the new Generated CGA address.

3.5 How to Run the Application

In order to run the Android application on an Android device, you should first build the

executable C file on a Linux operation system, then copying the generated executable file to a

folder in the Android device. Finally, you install the Android application and run it.

You should make sure of the next notes in order for the application to run successfully:

First, you will need to check if your Android system kernel is compiled with support for

libentfilter_queue. Follow the following steps,

 Connect your Android device to your computer.

 Enter command “adb pull /proc/config.gz” to get the config.gz file from your Android

device.

 Extract config.gz file, you’ll get a file named config. This is actually your Android Linux

kernel build configuration file.

 Search for CONFIG_NETFILTER_ADVANCED, CONFIG_NETFITLER_NETLINK and

CONFIG_NETFILTER_NETLINK_QUEUE in config file, make sure they’re not

commented out.

If your Android build is not complied with these features, you’ll need to compile customized

kernel build to use libnetfilter_queue.

36

The Android device should be rooted, and has ip6tables program with support for the

NFQUEUE target.

To compile and build the executable C file, go to jni folder under the application directory and

execute the command “ndk-build”, this will use the make file named “Android.mk” to compile

and generate the executable file. To copy the file to the Android device, go to the

/libs/armeabi folder and execute the command “adb push nfqnltest /data/data/nfqnltest/”

which will copy the executable nfqnltest file to the correct folder in the device. Figure 3.10

shows the terminal window after executing these commands.

Figure 3.10: Linux commands to compile and copy the C executable file to Android device

37

Chapter 4: Results and Conclusions

We implemented SEND on Android; we could capture the IPv6 packets from the kernel and

send them to user space, where our Android application works on filtering and modifying

them. We added all SEND options to achieve proof of address ownership and message

protection. Figure 4.1 and 4.2 shows the LogCat output in the Java ADT eclipse for both C

executable file and Java application respectively. The LogCat figures show the captured

packets data, and some extra logging information.

Figure 4.1: eclipse LogCat output for running C executable file

38

Figure 4.2: eclipse LogCat output for Android Java application

4.1 Results

We will provide a CGA computational cost results and running the application results.

4.1.1 CGA Computational Cost Results

We tested the CGA algorithm Class on a dual core processor Samsung Galaxy Tab3 Android

device with 1.2 GHz CPU speed. We called the function that creates the CGA addresses with

different parameters and calculated the time it took to generate the address. Table 3.1 shows

the result we got. We repeated the test fifty times for each case and calculated the average

time. Figure 4.3 shows a snapshot from the application during CGA computational cost

testing.

Test # Sec value Key Length Avg. Time in Millisecond

1 0 1024 500 msec

2 0 2048 2428 msec

3 1 1024 211961 msec

4 1 2048 3317456 msec

Table 3.1 CGA Address Algorithm, average generation time

39

Figure 4.3: snapshot from CGA computational cost testing.

4.1.2 Application Testing Results

Since Android has it is limitations with IPv6-only network connections [29], we could not

connect dynamically to the configured IPv6 network in the university lab, so we connected to

the network by using static address, and thus we could not test the entire application as a

whole, so we tested each one of it is functions alone. The implementation works well and the

application do its work correctly, except for configuring the new CGA Address to the device

interface. The device does not take the new IPv6 address. This is because we connected with

static IP address configuration. Figures 4.4 and 4.5 show the Android application logging

page, the page shows some logging information after starting SEND service.

40

Figure 4.4: some logging information from Android Application

41

Figure 4.5: some logging information from Android Application

42

4.2 Conclusions

The Neighbor Discovery Protocol (NDP), which is an IPv6 Protocol that roughly corresponds

to IPv4 ARP, is vulnerable to set of threats if not secured. The Secure Neighbor Discovery

(SEND) extensions counter security threats to NDP by offering proof of address ownership,

message protection, and router authorization. The fast growing of smart phones that connect to

Internet for almost every service provided by companies around the world, and with huge

companies binding their services to IPv6; comes the needs for implementing the Secure

Neighbor Discovery extension on smart phones like Android.

SEND deployment is challenging task, especially on a limited resources devices like smart

phones. There is a need for deep understanding of SEND new messages and options, how it

works, and how to analysis packets and modify them. Also there must be a huge knowledge

about Android devices, especially there architecture components and Kernel specifications.

Android devices has a serious limitations with IPv6 networks, the devices for the current time

is hardcoded to connect to IPv4 networks, which limit the ability to dynamically connect to

IPv6-only networks.

43

References

 [1] W. George, et al. “IPv6-Required”, RFC 6540, April. 2012;http://tools.ietf.org/html/rfc6540

[2] S. Deering and R. Hinden.”Internet Protocol, Version 6 (IPv6) Specification”, RFC 2460, December 1998;

http://tools.ietf.org/html/rfc2460

[3] IPv6 Implementation Guide,Cisco IOS Release 15.2S,” Implementing IPsec in IPv6 Security”

[4]S. Thomson, T. Narten, and T.Jinmel, “IPv6 Stateless Address Autoconfiguration”, RFC 4862, Sept. 2007

;http://tools.ietf.org/html/rfc4862.

[5]J.Arkko et al.,”Secure Neighbor Discovery (SEND)”, RFC 3971, Mar. 2005;http://tools.ietf.org/html/rfc3971

[6]T. Aura, “Cryptographically Generated Addresses (CGA)”, RFC 3972, Mar.2005;

http://tools.ietf.org/html/rfc3972.

[7] A. Alsa’deh and C. Meinel.“Secure Neighbor Discovery”, IEEE SECURITY & PRIVACY Magazine,

July/August 2012;http://www.hpi.uni-

potsdam.de/fileadmin/hpi/FG_ITS/papers/Trust_and_Security_Engineering/2012_Alsadeh_SecurityPrivacy.pdf

[8]T. Cheneau, “NDprotector”;https://amnesiak.org/ndprotector/

[9] A. Jayaraj,” What Is Scapy”,Oct. 2013;http://resources.infosecinstitute.com/what-is-scapy/

[10] R. Hinden.”IPv6 Addressing Architecture”, RFC 4291, Feb. 2006;http://tools.ietf.org/pdf/rfc4291.pdf

[12] T. Narten,. “Neighbor Discovery in IPv6”, RFC 4861,Sep. 2007;http://tools.ietf.org/pdf/rfc4861.pdf

[13]S. Garbett,” IPv6 Neighbor Discovery Protocol”,Nov. 2012;http://ccieblog.co.uk/ipv6/ipv6-neighbor-

discovery-protocol-ndp

[14] Arkko, J., "Effects of ICMPv6 on IKE", March2003.

[15] P. Nikander. ”IPv6 ND Trust Models and Threats”, RFC 3756, May. 2004;

http://tools.ietf.org/pdf/rfc3756.pdf

[16] A. AlSa’deh, H. Rafiee, and C. Meinel, “Stopping Time Condition for Practical IPv6 Cryptographically

GeneratedAddresses,” Proc. 26th IEEE Int’l Conf. InformationNetworking (ICOIN 12), IEEE, 2012, pp. 257–

262.

[17] http://developer.android.com/about/index.html

http://tools.ietf.org/html/rfc6540
http://tools.ietf.org/html/rfc3972
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/papers/Trust_and_Security_Engineering/2012_Alsadeh_SecurityPrivacy.pdf
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/papers/Trust_and_Security_Engineering/2012_Alsadeh_SecurityPrivacy.pdf
https://amnesiak.org/ndprotector/
http://resources.infosecinstitute.com/what-is-scapy/
http://tools.ietf.org/pdf/rfc4291.pdf
http://tools.ietf.org/pdf/rfc4861.pdf
http://ccieblog.co.uk/ipv6/ipv6-neighbor-discovery-protocol-ndp
http://ccieblog.co.uk/ipv6/ipv6-neighbor-discovery-protocol-ndp
http://tools.ietf.org/pdf/rfc3756.pdf
http://developer.android.com/about/index.html

44

[18]https://github.com/TrustRouter/TrustRouter

[19] https://github.com/TrustRouter/TrustRouter/wiki/Client-Implementation:-Overview

[20]https://github.com/TrustRouter/TrustRouter/wiki/Router-Advertisments-and-SEND

[21]http://sourceforge.net/projects/easy-send/

[22] http://www.netfilter.org

[23] http://man.cx/?page=ip6tables(8)

[24] http://www.netfilter.org/projects/libnetfilter_queue/

[25] http://developer.android.com/tools/sdk/ndk/index.html

[26] A. Siddique, M. Akhtar, S.Tanweer,” Android Basic Architecture including Operating System using their

Application”,April 2012; http://www.ijmra.us/project%20doc/IJMIE_APRIL2012/IJMRA-MIE900.pdf

[27] N. Smyth, “Android 4.4 App Development Essentials”, 4th Edition book, chapter 6, 2004.

[28] http://www.savarese.org/software/vserv-ipq

[29] https://code.google.com/p/android/issues/detail?id=32630

https://github.com/TrustRouter/TrustRouter
https://github.com/TrustRouter/TrustRouter/wiki/Client-Implementation:-Overview
https://github.com/TrustRouter/TrustRouter/wiki/Router-Advertisments-and-SEND
http://www.netfilter.org/
http://man.cx/?page=ip6tables(8)
http://www.netfilter.org/projects/libnetfilter_queue/
http://developer.android.com/tools/sdk/ndk/index.html
http://www.ijmra.us/project%20doc/IJMIE_APRIL2012/IJMRA-MIE900.pdf
https://www.smashwords.com/books/view/405557
http://www.savarese.org/software/vserv-ipq

